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ASYMPTOTIC PROPERTIES OF STOCHASTIC APPROXIMATIONS
WITH CONSTANT COEFFICIENTS

Harold J. Kushner and Hai Huang

Abstract: Asymptotic properties (as a -+ 0, n » ») of the Stochastic

Approximation (SA) algorithm

(*) X 4 = X, + ah(X_,E)

are obtained, where h 1is not necessarily additive in €n. If

Eh(x,&n) = g(x) and x g(x) 1is asymptotically stable about a

solution x, = 8, then the asymptotic properties of {(Xn-e)/JE} E
{Ui} are developed. In particular, it is shown that (as a » 0) a natural
continuous parameter interpolation of {Uz} converges weakly to a
linear diffusion process, from which the asymptotic properties of
{Ui} and {Xn} for small a can be obtained. The conditions on
{in} are reasonable from the point of view of the usual applications

to adaptive systems and identification. These results seem to be

the first of their type for SA's with constant coefficients. Some

rate of convergence results for classical SA's are improved. Also,
an application of (*) to a problem of tracking the time varying
parameters of a linear system is discussed, and a limit theorem
obtained. Because in the usual practical implementations of SA to
problems in systems theory, the gain sequence {an} does not
normally go to zero (due to considerations of robustness and

non-stationarities), these results are of particular importance.




ASYMPTOTIC PROPERTIES OF STOCHASTIC APPROXIMATIONS
WITH CONSTANT COEFFICIENTS

1. Introduction

In [1] rates of convergence for stochastic approximations
(SA) of the type

(1.1) Koop = B * X8

were treated, where {an} is a sequence of positive numbers
tending to zero and such that I B, =, and {€n} is a sequence
of random variables. In particular, we used a = A/(n+1)a,
0 <a <1, although the proofs could have been adapted to deal
with more general sequences. As has been usual in rate of con-
vergence studies for SA's, it was assumed that there is a vector
® such that X * ® w.p.l, and that {¢ } is a stationary
sequence. Unlike previous works on the rate of convergence
problem, [1] did not assume that h 1is additive in £n; the
additivity assumption is not satisfied by many important applica-
tions in systems theory.

In this paper, we obtain analogous results concerning
asymptotic behavior and rate of convergence for the case where

a, =a, a small constant. The algorithm will be written in the

form (1.2), where f and g are measurable functions,further properties

of which will be given below.




J s a ,a

(1.2)

a a a a
X, + ag(X ) + af(X ,&)

Xy = Xy independent of a

Algorithms of the type (1.2) are particularly important in applica-
tions tu both identification theory and adaptive systems theory,
and for a version of this problem, the results are both specialized
and extended in Sections 6 and 7; in Section 7 {£z} is non-
stationary, and the 'parameter tracking problem" is dealt with. In
such applications, h is not additive in the noise &i, and the
{Ez} may not be a stationary sequence. Furthermore, in
engineering practice there is usually a constant a > 0 such

that either {an} tends to a or else that a = a, although
almost all the existing analysis of (1.1), (1.2) (indeed of all SA
methods [2], [3],'[4]) assume a -+ 0. The case (1.2) is more

robust than (1.1) in the sense that it can better accommodate
non-stationarities and modelling errors, and it is often the form
used in applications.

In general, little is known about the sequence (1.2).
Normally, {X:} does not converge w.p.l, and if {&;} is non-
stationary it may not even converge in distribution. Under
various assumptions, (1.3) (a specialization of (1.2)) has been
treated in the adaptive process literature. Here B is a vector

valued bilinear form and A,C are matrices (Widrow et al [S5],

Senne [6], Davisson [(7]).

a - ya a ra a a
(1.3) xn+1 s xn + aB(xn,En) + aCEn + ann.
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Results such as TIim Elle2 + 0 as a - 0 were obtained. Our
n

method works under broader conditions (we assume bounded noise;

for a form of (1.3), (7] dealt with unbounded but m-dependent

Gaussian noise and used a trick similar to the concatenation of

m steps into one and then exploitation of a result for in-

dependent {52})and yields a much more complete picture of the

process behavior. As in [1], [3], weak convergence methods are

used.

Define Ui = (Xi-e)//g and t = an. Let N, bea
sequence which goes to ® as a - 0, and define the piecewise
constant continuous parameter process Ua(-) by Ua(O) =
US 3 vd(t) = U:+N in [na,(n+l)a). We prove that (wvd()}
co:verges weakly io the Gaussian diffusion (5.1) as a » 0, where
R is defined below (5.1) and H = gx(e). The results yield
stability of the process (1.2) for small a, together with the
asymptotic (as a =+ 0) error variances and correlation functions
(of Ua(-)). It seems to us that the general approach is quite
straightforward and relatively easy to use. The weak convergence
and stability ideas yield a lot of intuitive insight into the
relations between the structure of an algorithm and its asymptotic
properties. Since it makes no sense to assume convergence
xn + some 6 a priori, some stability analysis is needed. For
the special adaptive process case when (1.2) reduces to (1.3),
the situation is simpler, and we obtain better results in

..iom 7.

In Section 2, assumptions for the general problem are

stated. Tightness of {Uz, n > Na} is obtained in Section 3.

’wm
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Section 4 contains some remarks concerning special cases, and

on the use of the methods of this paper to extend known convergence

and rate of convergence results for SA's of the type (1.1) when

the SA sequence converges in probability rather than (the usual

assumption) almost surely.

The main 1limit theorem is given in Section 5, and Section 7

treats the special case (1.3) when the statistics of {&i} are
time varying and both H and R are functions of time. Some
of the arguments are similar to those in [1], and we formulate
the problem here so as to use the earlier results whenever

possible.

2. Assumptions for Section 3

K denotes an arbitrary real number (independent of
x,§,n,a) and #ts value may change from usage to usage. Gxx(x)
denotes the Hessian matrix of a function G and Ei denotes

conditioning on &?, i < n.

Remarks on the assumptions. In order to get rate results

a
n’
obviously require that the tails of {Xi} converge in some sense

(i.e., limit results for Ua(o) or U as a » 0, n » ») we
as a » 0. This requires some stability properties of the
"deterministic'" part of (1.2), in particular that a solution
x
stable. For notational convenience in Section 3 and in the
assumptions, we set 9 = 0 there, without loss of generality.

In Section 4 on, we reintroduce 6. It seems best to deal with

¢ = constant = ® of the ODE x = g(x) is globally asymptotically




f‘ the stability problem by introducing a Liapunov function V(*)

5

for x = g(x). Conditions (A6)-(A7) below are often guaranteed by
various forms of strong mixing conditions on {€i}. In the usual
applications to identification and adaptive systems theory [5], [8],
there is an asymptotically stable A such that g(x) = Ax and

an affine function f(:) such that f(x,§) = f(x)€. Then V(-)

is chosen to be a quadratic form and (A4)-(AS) hold, and so do

(A6) - (A7) under simple conditions on {Ei}. See Section 7 for more detail.

Al. For each a, {Ei} is a bounded random sequence and

Ef(x,&i) = 0, all x,a,n.

{ e A2. g(®) =0, 6 = 0 (here and in Section 3, for no-

tational convenience only) g(:) and f(-.,+) are measurable.

The first and second partial x-derivatives of f(+,5) and g(-) are

continuous for each §.

A3. There is a non-negative three times continuous differ-

entiable Liapunov function V(-) for x = g(x) such that

V(x) >0, V(x) » » as |[x|+>, V(x) = x'Qx + o(|x|2) for some

positive definite matrix Q.

A4. For some real Yy > 0, Vi(x)g(x) < -yYV(x).

AS. Vxx(') is uniformly bounded and If(x,E)l2 +
lgx) % < KV (x)+1).

A6. °falz*‘v'( £(x,E3)| < aK(V(x)+1).
L alEQVi 0 £(ED| < ak(V(x)+1)




She
o g a

7‘ A7. igna|Eﬁ(Vx(X)f(X’€i))xx| < ak,

'i} -~ a a ; 172
iEnalEn( Vi(x)f(x,&i))xj < aK(V'/ “(x)+1).

(A5) implies that f and g grow at most linearly in Xx.

3. Tightness of {Ui small a, n > N_}

Fix KO > 0. Let Na denote any integer such that

exp(-(aY/Z)Na) < Koa. We have the n > Na requirement because

of the effect of the initial condition. In general, {Xn//5, n>o0,

small a} will not be tight unless x0 = 0. So we wait

(Na steps) until the effects of the initial condition are small.

In any case, we are concerned with the tail of {Ui} for

small a. For the special case (1.3), it is possible to center

the sequence {Ui} in such a way that {U2

n» M > 0} can be

dealt with (then Na = 0 is used) and a better result obtained.

See Section 7.

Theorem 1. Under (Al)- (A7), {Uﬁ, small a, n > Na} is
tight.

Proof. Again, K defines a constant whose value may change

from usage to usage. Define (well-defined by (A6), recall iy = an).

(3.1) v‘;(x,tn) = a ianiV)'((x)f(x,E"il)

and define




sy

(3.2) Va(x,tn) = V(x) + v§(x,tn).

The proof uses a Liapunov function approach with Liapunov function

a

V®. The reason for the introduction of the Vi term will be

clear below; basically, it is useful owing to the non-independence

of the {£%} and allows us to "average' out their effects. In-
i

a

deed, Vi = 0 when the {€?} are independent. We first evaluate

a,a_..a a ol =
BV et ol = VOC e ) =T, T, + ¥

1 2 52

where

=3
1

8y vl a
1 EnV(Xn+1) - V(Xn)

-3
I

a,a,ya a. .a
2 Envl(xn’tn+1) B vl(xn’tn)

-3
[

= E2viKx - E3VE (X}, tne1)-

a
n+1’tn+1)

+ : .
Let X; and Xn+ denote random variables in the range

a

b wF

Xz+1]. Then, via truncated Taylor series expansions

-]
"

L = avi(xyg(xd) + avy(x3)£(x3,ed)

+
n

+

2
& ExED + eV, (XD (E(XE,68) + g(x¥))

XX

T a a -a
: T, = -aVl(X3)£(x3,62)




SRR

-8-

o0 o
a a a a a a a ra
a I EVOQEOGED - a1 BV OQER,ED)

a i=£+lsﬁ(vx(xﬁ)f(xﬁ,&?»icf(xi,gﬁ) + g(x®))

+

At ot o a.a Ay oy ettt ++ ca a
L ERCECQUED) + eOQ)) VO EOGT D1, (KR, 8p)
+ g(x3)).

Now, (A4)-(A7) yield (note that T2 cancels the second term

of Tl; this is the reason for the introduction of Vi)

aya .a a  a
(3.3a) EV (pe1otper) - V (E,t,) £ -ayV(xi) + aZK[V(x§)+1],

By (A6), |v§(x,tn)| < aK(V(x)+1) and by (3.3a)

a,,a . a a .,a
(3.3 BV G .petog) - VOGIE D ¢ ey @l )

+ aZK[Va(Xi,tn)+1]-

Let a’k < ay/z (or, equivalently a < a, = Y/2K). Then (3.3b)
yields
(3.4) ESV (X o) exp (arn/2)v?(x¥,0) + Ka.

Equation (3.4) also holds for V replacing ve, Thus, by

(3.4) and (A3), for any constant K1 and n > Na’ a < ag.




Klexp-awN,/2] [V(X()+1] + Ka
kla

POG'QE + o1 > Kjal <

€3.5)
< Ky

a

Tightness of {Un small a, n > Na} follows from (3.5)

in the following way. Fix ¢ > 0. To get tightness we need a

xa'an

® .
kg < such that P{-—; > kgl <8, all a<ajg n>N.

There is an €, > 0 such that for x'Qx < €, |o(|x|2)| <

x'Qx/2. For each real k., > 0, there is a k4(k3) > 0 such

3
that x'Qx > k; implies V(x) > k,(k;) and we can choose k,(-)
to be a monotonic function.

Let n > Na' By (3.5) (recall that K might have a different

value in each usage).

! '
P(X2 Qx2/2a > k;} < K/k; + PAX2'Qx] > ¢}

< K/ky + PAV(XD) > ka(e)} < K/k) + Ka/k,(g).

Choose k; such that K/k; = §/2. If a <a

6k4(€0)/2K, then

the right hand side is < 6. If a, > a > a, note that for any

k>0
xa'Qxa xa'Qxa
Pi-BB 5 %) < PEBcl® s &} < PIVIRET > K (EE)D
a - - E (- S n - 4

A

Ka/k4(§k) < Kao/k4(5k).

Now choose k2 such that Kao/k4(5k2) < 6. Finally, let

k6 = max(kl,kz). Q.E.D.
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4. Remarks

(i) In a practical implementation of the algorithm (1.1)

a, might not be chosen to be constant, but might be allowed to

decrease to some value a > 0 by iteration number Na’ where

Na will be chosen such that Elxilz ~ Ka, and a, will remain

N S, v R,

at value a thereafter. Under our conditions, we can, in fact,
prove that {Xﬁ//z;} is tight. But if we are only interested in
the '"tail" of {Xi}, we can often assume that the initial condition
|2

error is commensurate with the value of a [(i.e., Elxg < Ka).

We might also be more concerned with the ability of the algorithm
to track changes (e.g., the changing system parameters in the
identification example (Section 7), than with the transient errors.

a

Then we only need look at the '"errors' Un for large n (say,

n > N;) once the transient errors due to the initial condition

have been "dissipated". ;

(ii) Stochastic approximation (1.2) with B 0. Again, }
suppose without loss of generality that the origin is the unique |
asymptotically stable point of x = g(x). Let a = A/(n+1)a, §
a € (0,1]. Then the method of Theorem 1 can be used to show !
tightness of {Xn//ig, n > 0}, without the (usually required)

assumption that XNy * 0 w.p.l. To do this we first define

nil 0{
o= a. and V,(x,t.) = a.E V!
n i=0 1 b ST jsp 1 R X

denotes the expectation conditioned on Ei, i < n. Then under

(x)f(x,éi), where En

(A1) - (AS) and obvious analogs of (A6)- (A7) (the a wunder the

summation is replaced by ay and that on the right hand side is




replaced by an) {Xn//E;, n > 0} can be shown to be tight.

Set Vo(x,tn) * Vi{x) « V;{x,t.]).
In order to prove the tightness, we derive the inequality (via

the method of Theorem 1).
EVOX oot ) - VO ,t) < -va V(X)) + alK[V(X.) + 1]
n n+l’ "n+l n’ n’ - n n n n

and then continue according to the scheme in Theorem 1 using (the

analog of (3.4))

0 0 nlonl oy 2 3
EV"(X_,t ) < - 7 0) + K l1-5 a, + Ka)a?,
(Xt ) < lexp-vt /2]1V (X,,0) iEO j=U+1( 7 3 aJ)a1

and then show that the above right side is bounded above by Kan.

This result is important because the proof of tightness of
{Xn//E;} is the basic problem in rate of convergence results for
stochastic approximations. If tightness of {xn//E;} is known,
then the rate of convergence nroofs in [1], [3], [9) all go through
with virtually no changes without using the assumption that

L O 20 w.p.d.

(iii) Stochastic approximation, additive noise. Continue

with the situation in the last paragraph, but let f(x,§) = &, the
classical Robbins-Monro case. Then (A6)-(A7) are particularly
simple. There are adaptations to the Kiefer-Wolfowitz case, where
c; = C/(i*1)Y, a; = A/(i+1)%, 2v<a, ¥ > 0, and {c;} is the
finite difference coefficient sequence. Then the normalizing

sequence is {/Eg/cn} rather than {/5;} or v/a.




LW

5. The Main Rate of Convergence Result

In this section, we let © rather than 0 denote the

stable point of X = g(x), and introduce the additional assumptions

(A8)-(A12) below. Thus, we use U: = ze//i, where ze = (xi-e).
For each a > 0, define the process Ua(-) by Ua(O) = U; :

and for each integer i, Ua(t) = U?+N in [ia,ia+a) . We :ill
show that Ua(') converges weakly ina Drlo,w) to the solution

to the Gauss-Markov process U(-):
(5.1) du = Audt + RY/24B, U(0) = weak limit of {(U%(0)},

where H = gx(e), B(®) 1is a standard Wiener process and R is

defined by (see (A9) below)

R = 1im § R3(i),
a+(0) -o

where

P
R (1) = E£(8,6)£'(8,85,;).
Also, if aN, >« as a > 0, then the weak limit of {U®(:)}
is the stationary solution to (5.1).
Suppose that Ua(') does not converge weakly to U(:) in
Dr[0,w). Then there is a sequence {ak} of positive numbers

which goes to zero as fast as we wish and a T < » such that
a
k

(+) does not converge weakly to U(:) in Dr[O,T]. Thus,

U

-

A R & i g
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: . ak - r
it suffices to show convergence of U "(+) in D [0,T] for an
arbitrary T, and for a sequence {ak} which goes to zero fast
enough, but 1s otherwise arbitrary. We will set the problem up
similarly to the way it was set up in [1], so that the results
of that reference can be used whenever possible.

The following assumptions are required (analogous to (A3a)
of [1]). Define ma(t) = max{i: ai < t}. After stating the

conditions, we comment on their reasonableness.

A8. There is a T1 > 0 such that

ma(tN+t)-1

P{ max a ) E {0800 » 81 = K () » B
0<t<T;  i=m(ty) S &

as a »> 0, for each € > 0, uniformly in N.

A9. Define h? = f(a,ﬁ?). Then {h?} is stationary for

each a. Define R%(i) = Eh?(h?+i)'. Then R? = § R¥*(i) is

absolutely summable and the sum converges uniformly in a. There

is a matrix R such that R? » R as a =+ 0.

1
A10. Define #2(i) = js:goﬁl/zlE?h?+ih?+i+z - R*(2)|%. Then
: B

.io(pg(i))l/z < o, where the sum converges uniformly in a.
1=

All. Define 63(i) = sup EV/2|E2h2,.1%, i > 0. Then
>

Y (D%(i))l/2 < o, where the sum converges uniformly in a.
i=0

A12. £ (x,8)] + g, (x)]| < K.

IS 1 g AR 3 S s

- e
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Remarks on (A8)-(Al12). The conditions do not seem to be

particularly strong. Except for the boundelness of {E:}, they
are basically the conditions used in [1], adapted to the present
case.

Let {Ei} be a ¢-mixing process in the sense of [10] with
X ¢i/4 < o  where ¢i does not depend on a. Then (A9)-(All)
hold. Condition (A3b) of [1] always holds if the noise {En} was
bounded (set T = 0 there).

Define k? = fx(e,i?), let there be an ﬁi such that
|Ek?k?11| < ﬁi for all j and (small) a > 0, and define
R = 2 ii' Then by a Mensov-Rademacher type estimate ([3], p. 98),

i
there is a K (depending on R) such that for each T1 >0

> ma(tN+t)-1 e
a’E max | ] L
thl r=ma(tN)

2 < kal(m, (ty*T))-m () logiaim, (tysT,)
= ma (tN)]

2 2
< TlK a log24T1/a < Kla log,a
which implies (A8). Other examples satisfying (A8) appear in [3].

Theorem 2. Assume (Al)-(Al2). Then {Ua(o)} converges

weakly in D'[0,») to the U(-) of (5.1). If N, is such that

aNa + o, then U(0) has the stationary distribution of U(t).

Proof. Fix T > 0. Let {ei} and a, denote sequences of

positive numbers such that } e; <=, a, + 0, and (see (A8))
i




‘ ‘}".' .

=

(5.2) i kak(ek) < o,

If (A8) holds for some T, then it holds for all Tl, SO we can suppose

that T1 = T. By the discussion at the beginning of the section

a
it is enough to prove the theorem for (U k(-)}.

Part 1. Define /Ef(e,‘c',?) Gw?, and W2 = '2 w2 and

let Wa(-) denote the function on [0,T] which equals

a

WN n on [an,an+a). By a truncated Taylor series expansion
a’

8X2,p = [I+agx(9)+afx(6,£i)léxz

+

af(6,62) + aB, (G(X}),8x3) 6x2

a a a a
[I+aHn]6Xn + af(e,En) + aYn s

where Bl(G(X;),Gxi) is a matrix valued bilinear form in
G(x;) and 6x§, and the elements of G(x;) are components of

the second derivatives of f(x,&i) + g(x) evaluated at some point

in the interval [6,Xi]. Hi is defined in the obvious manner.
Thus

a i a, .a a a
(5.3) Un+1 = [I+aHnlUn + awn + vYa Yn-
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A N+n-1 2 =
Define Ty = Y va ¥$& and 1let T%(:) denote the
’n j=N n
function on [0,T] which equals F; n ©on [an,an+a).
a’

Define the function C%(a) by C§+1(a) = I and for
n>L+],

N+n

N+n a a a
(' (a) = ¥ [(I+aHS] = (I+aHS, ) ... (I+aH ).
N+2+1 j=N+2+1 j N+n N+2+1

By iterating (5.3) and doing a summation by parts, we get

(5.4), just as (3.6) of [1] was obtained.

a _ ~N+n a N+n . a a
UNene1 = Oy (@UN * Cnui (WN ne1 * TN, nel)
(5.4)
- ? acN*? (a)ud, . [(wd S R e B
e=1 N+2+1 N+2 N,n+1 N, 2% N,n+1 N
Part 2. We now argue that
ma(tN+t+s) B
(5.5) Cma(tN+s) (ak) + exp Ht on [0,T]

uniformly w.p.1l, as k » «, for any fixed N or sequence N » «

Y

as k + », The 1limit result (5.5) follows from [1), Lemma 2,when

we make the following identification of our {ak} with the {ak}

in [1], Lemma 2. To avoid confusion write the {ak} of [1] as
Then set the first [T/all of the {Eh} equal to our a,, the
next T/a, of the {Eh} equal to our a,, etc. Then (A8),

(5.2) and the Borel-Cantelli Lemma imply (A3) of [1], hence

also its Lemma 2 and (5.5).

{a, 1.
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a
Part 3. As in [1], Theorem 2, (A9-All) imply that (W k(-)}
converges weakly to a Wiener process W(:) with infinitesimal co-
variance R; i.e., W(t)=R1/zB(t), where B(:) is a standard Wiener

process.

a
(5.6) T k(-) } converges weakly to the zero process as

k> o,

then the proof is completed via the arguments of (1], Theorem 2,
part 3, and we will only prove the desired weak convergence (5.6).
The purpose of the argument in [1], Theorem 2, part 3,is simply to
show that the H;+£ in (5.4) can be replaced by gx(e). With this
replacement and the convergence of {U;} and {Wa(.), re=1t,
(5.1) follows from (5.4) and (5.5).

Let Mk denote [T/ak], and Nk = Nak. In view of the
properties of {Yg}, (5.6) holds if (5.7) does

(5.7) P(Va, I |x§|
1=Nk

2 >»E} >+ 0 as k + =, each € > 0.

If V(-), the Liapunov function of Theorem 1, is quadratic, then’

a
E|X k .Iz < Ka, by Theorem 1, and (5.7) holds by an application of

= k
Chebychev's inequality. We now prove it in the general case.
Recall from Theorem 1 that there is a K such that for

2N, and the V? of Theorem g

*Recall the criterion for Na given in the first sentence of
k

Section 3.
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. a ,.a i
_:; EV(X3) < Ka, [|EVI(X[,t))| < Ka, %
(5.8) V¥(x,t ) > -Ka, §
a a 2 ya,ya 2 é
Env(xn+1’tn+1) < (1-va+Ka®)Vv (Xn,tn) + a~K. ¢
? Let K be fixed at its above value henceforth in this proof,
E and let n >N, and n - N, < T/a and let ‘'a' be small enough
such that
i -Ya + Ka2 <0, Ka<1l, a < 1.
i Define the random variables L% by
L2(x®,n) = v3(x%,t_ ) + ak + (T-a(n-N 1ya3/ %k,
n’ n’ n a
E | Then La(xz,n) > 0. By (5.8), we have

‘A

a,a,ya Zaoa-od
EnL (xn+1,n+1) (1-va+Ka®)Vv (Xn,tn) + ak

(5.9a) /4 2

+ Ka“,

+

(T+aNa—(n+1)a)Ka3

and, consequently,

a.a
EAL (X2, ,,n+1) - L¥(X],0) <

(5.9b) 2

(-Ya+Ka2)Va(x§,tn) + Ra® - ga'’H

< 0.

‘A

y Thus {La(xi,n)} is a non-negative supermartingale for each

small a. Thus, there is a real K1 such that
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1 (5.10) P{ sup L20x8,1) » 258y < BB N ) 7a%8
g N, <i<N, +M, -1 * i > Np' 'k
> Db S
< K(a+a3/4)/a5/8 = 0(31/8).
There is a KZ < » such that if La(xi,n) < a5/8, then
5/8

a
i V(Xn) < Kza
5/8

We can suppose that a is small enough so that

V(x) < K,a implies that V(x) > x'Qx/2, and Va(x,n) >

2
x'Qx/2 - aK. Then, for small a and La(Xi,n) < a5/8,

(5.11) 0 < L3(x3,n) = o(a’%) + 5.

Ade s ol Siit e ot LA EEa B

where § > (xﬁ)'Qxi/z. Equation (5.7) follows from (5.10) and

(5.11), since there is a real KO such that with probability

1 - 0(al/®)y,
b . x
E Np M -1

/A 1 x¥)axd/z < va (1/a) (Kga*/®) = 0@!/®). q.E.D.
i=N, : S

e g

L K g

6. Adaptive Systems - Examples

We will describe very briefly two of the more important
systems which fall into our framework. Let {u_,u } and {yn}

denote the input and output sequences, resp., of the linear system

] (6.1) ¥ o -[clyn_1 # lmy P Ckyn-k] +[b0un SRS blun-ll il
Suppose that the system is asymptotically stable when u, = 0, u, = 0.
Define
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an = ('Yn_ls'°"'yn_k,un’-°~9un-2)'9 0 = (Cl""’ck’bO""’bl)"

and let {un} be a zero mean random sequence which is independent

of the zero mean sequence {un}. A common algorithm for estimating
8 is

= - ]
(6.2) Xn+1 Xn + an[yn annlwn.
where xn is the nth estimate of ©. Under various conditions
(including a > 0) Xn + 6 w.p.1 [2], [3]. In practice, due to
extraneous noise, robustness considerations, or model uncertainties,
it is common for either ay +a>0 or a_ = a, a constant, per-

n

haps a matrix. The case where 6 varies with time and a, =

is dealt with in detail in the next section.
Next, consider a similar algorithm which is very useful in
adaptive communications theory. Let {Sni}’ i=1,2 and

{N_;

1}, i = 1,2, represent stationary signal and noise sequences,

resp. {Snl} and {Snz} ({an} and {an}, resp.) are related
in the sense that they are signal (noise, resp.) processes appear-
ing at the inputs to different antennas, but are from the same

transmitting source. Let Yy * Sn1 + Nn and u, = snz + an

1

denote the actual inputs to the two antennas. Let k be a fixed
3 = ' . . X -

integer and set ¢n (un”"'un-k) . It is desired to find the
weight vector X which is the minimizing X in the expression
E[yn - X'Wnlz. The motivation behind this desire is that (roughly

speaking) if the power (in the communication theory sense) in the

{Nni} sequences is greater than that in the {Sni} sequences, then




under reasonable conditions the ratio of signal to noise power in the
"output" difference sequence {yn-Y'wn} is essentially the inverse

of that in the input sequence {yn}. This is obviously a desirable

result. See [5] for the simple calculation, along with a
discussion of some useful applications.

The algorithm (6.2) is often used to calculate the optimum X

recursively, when a = a. But, in this context, (6.2) is not well

understood. Usually, it is only proved that EX =~ converges.
Exceptions to this are the work of Davisson [7] (with m-dependent
stationary Gaussian sequences as inputs) and Senne [6] (where the
stationary inputs satisfy a type of mixing condition), where it

is proved that Elxn-fl2 + 0 as a » 0. The method of Section 8
exploits the technique of the last section in order to get a more
complete picture in the general case where a is small and the
processes are non-stationary, an important case which actually
justifies the use of the adaptive algorithm, but which has not

yet been dealt with in the literature.

7. The Non-Stationary Identification Problem (6.1)

In this section, the parameter 6 in (6.1) is allowed to
vary with time, and we let 62 denote its value at time n. Since
the variations in {ei} affect the statistics of {wi}, the
identification problem is more complicated than the adaptive
communications problem, and we consider only the former case.
Assume that {un,un} are bounded. Non-stationarities due to the

e: variations are more difficult to treat than the effects of




—

29,

non-stationary {un,un}. In order to concentrate on the more

important effects and minimize the notation, we assume that {un,un}

is stationary. Also {un} is assumed to be zero mean, and in-
dependent of {un} and Eun = 0.
We now model the time variations. Let 6(:) denote a uni-

R2+k+1

formly continuous valued function on [0,»), with values ;i

in a bounded set S. Suppose that the parameter” Gi takes the

value 6(an). To see the reasonableness of the model note that

the rate of change of the Gi must go to zero in some sense as

a » 0, for otherwise tracking would not be possible. ©6(:) could
be a random process, but no generality is gained by that; since
we treat one sample function at a time anyway. The uniform
continuity condition is used to assure that the {yn} sequence has
a certain stability property on [0,»). We want to avoid 6(-) é
getting "wilder and wilder'" as t -« It is not needed if we are {
concerned with some "finite" interval {n: na < T} only. ?
We could allow {ei} to be a random sequence for each a. ;
Even then, its rate of change must still be proportional to a in i
some sense (or to a fractional power of a; but then the u LM
terms play no role in the limit as a -+ 0). 1In any case, we want
an (limit) equation which yields the limit of the behavior of the
normalized interpolation of the error (Xn-ei) process in terms

of the limit of the parameter process,, so that the precise

relationship can be seen. Our scheme is a natural way to get this.

*The parameter 62 is the value of (Cl""’ck’bO""’b }* ax

2

b. are components of (hence functions of)

time n. Then the Ci» j

pa i ‘
n at time n
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The main object is to get some information on the properties
of {U:} when a is small. We might be interested, for example,
in an approximation to the distribution of some continuous function
of {U:, na < T}. To get this, it makes sense to parametrize the
problem so that we can get a limit result (as a + 0) which will
serve as the approximation to the {Uz}, and from which the approxi-
mation to the distributions of functions can be obtained (particularly
if the convergence is in the sense of weak convergence). If we allow
a - 0 without simultaneously slowing down the rate of variation of
9:, then obviously no limit result is possible, in general. Thus,
to even discuss the behavior for small a, we must allow the Gﬁ
to depend on a. As mentioned above, there are several ways in which
this can be done. Our choice allows a relatively simple exhibition
of the structure that the limit would have in a wide variety of cases
(where, perhaps, ©6(-) might be a limit in some sense of the
sequence of parameter variation functions 93(-), where Ga(t) =

e: on [an,an+a)).

The problem is set up in the next subsection.




mtmwn i

T .

B

The problem is formulated and some terms are defined in
Subsection 7.1. Subsection 7.2 obtains estimates concerning the
dependence of yn(e) on ©, and Subsections 7.3 and 7.4 obtain a
limit theorem for the interpolation of a deterministic centering
sequence{?n}, and tightness of {Ui} = {(Xn-eﬁ'?h)//a}, resp. In
subsection 7.5, the C;(a) are approximated by an exponential
function and in Subsection 7.6, Theorem 5 gives the appropriate

Wiener process limits and the convergence theorem for {Ua(-)}.

7.1. Formulation of the problem. Let {y,(%),v,(5)} denote the

output and output-input sequence when ei Z & for all n; then wn@) =
Cype1 (8o ny (8 uyoooyu 3. By (B1) below, these sequences
are second order stationary for each 6 € S. Define

R(8) = Evi(v)v;(u), R, = R(9(t)) and ﬁi = Ey_v', the true co-

t n n’
variance Set Y = X_ - 02, 2 = 6 (an+a) - 6(an) Ba =
;i n n n’ n > Fh
~a 2 ; =8 _ o . fa
[Ry-¥ ¥nl, B,(8) = [R(O) - w (@)v (08)), F; = Eus¥is vy, = upvy - Fy»

and F(®) = Euiwi(a). Except for the above defined terms, the
superscript "a'" will normally be omitted for notational convenience,

in particular on Yn’xn’vn and Yn’Yn below. We have

P
|

a ' & 1
n+1 = % * a[(en) Vo * ¥p " Xp¥plvy

Y

a ~a a
el = Jp c Mg - AR ap Yo * Ay

Define the sequence {Yh} by
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od B a _sag ~a ¥ =
(7.1a) Y =Y <sen aR Y + aF_, YO Yo»

and define Yn =Y -Y.. Then

% LUy apdy d-.c .t gl
(7.1b) Yn+1 = Yn aRnYn + aBn(Yn+Yn) +av,, Y0 0.

Yh is the "noiseless'" part of Yn’ and contains the effects of

the initial conditions. It is most convenient to work with the form

L Qn + Yh. This avoids the requirement of Section 3 (due to
the effects of the initial condition) that n > Na' Finally,
define {Ui} = {?n//z}, the sequence whose convergence we will
ultimately deal with.

In order to exploit the stability properties of (6.1), it

is convenient to work with (6.1) in state variable form. To set

this up, define ﬁh = (u,...,u )" and Z = Vg e 2Yp-1) "

Recall that, by definition, eﬁ = 06(an) = value of {cl,...,ck,
bO"“’bz}' at time n, a (k + & + 1) vector. For any S valued

parameter 6, we define

[ 0 1 0 ] B 0 T Ih

A(0) = B , B(9) = ° , €=
1 0 0
-ck(ﬂ), ..... ,-cl(e) bo(e),...,bg(e) 1

De [DyeseyByl]s
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: i a " a i
We define A, = A(ei), B, B(ei)' Then Zi+l Aizi +

Biai *+ Cuy, ¥y = DZ;,,. Define Zi(e) = {yn_k(e),...,yn_l(e)}.
Then

(7.2)  Z;,,(8) = A(®)Z,(8) + B(O)W; + Cu;, y,(8) = DI, (6).

Write E  for the expectation conditioned on “i’ai’ i< m.

The following assumptions are required.

(B1) |A™(8)| » 0 as n > =, uniformly for 6 € S.

s e a ) ?
(B2) iEnIEn(ViWi Ri)l i£n|Ean| bounded uniformly in

n,w.

(B3) There is a q > 0 such that R(6) - qII is non-

negative definite, for all © € S.

T nt: BN = s a .

(B4) _; IEn(Wiui - Fi" = .g IEnYil bounded uniformly
i=n i=n
in n,w.

(B2) and (B4) are not restrictive. Under (Bl), they hold

under a ¢-mixing condition (see [10] for the definition) on

1/2

{u ,u } with ) ¢;/“ < =. (B4) holds if the {u;} are mutually

independent.

7.2. Some preparatory estimates. Since the statistics of

the Wi(a) are easier to get than those of the Wi, we show that

¥, can be well approximated by wi(eg), uniformly in i, for

small a.
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Let P(®) denote the unique symmetric positive definite Liapunov
matrix satisfying A'(8)P(8)A(®) - P(®) = -I. By (Bl), there are

0 < p1 < p2 < = such that
(7.3) 911 < P(8) < pZI’ for all © € S,

We now obtain a series of results concerning the closeness of "
a ca a a :
R(en) to Rn and Zn+l(en) to Zn+1' Recall that Zi(en) is
the value obtained from (7.2), when the 6 in (7.2) is held fixed

at eg for all i (i.e., A(9) = A, B(8) = B). We can write

(7.4) z = 1 f& ...Aj+1](BjU.+Cuj).

J

For small a, the sum is (7.4) converges uniformly by virtue of

the stability assumption and its consequence (7.3). Indeed, by

(7.3) and the fact that |A(ez+1) - A(Gi)l +0 uniformly in n as

a > 0, there are a; > 0, ¢ > 0, K1 < @, such that (see also [11] for

a similar estimate)

n-j v
(7.5a) |Ay -+ Ayl < Kp(1-e) J, al1 n,j, for a < a,.

By (Bl), we can suppose that K;,e , are chosen such that (7.5b) also

holds.
(7.5b) IA%l < Kl(l-e)J.

The following approximation result is the basis of much of the

rest of the development.

+
a : : . 3a a .
Recall that R(en) is the covariance Evi(en)wi(ﬁn); i.e., the

parameter © is held fixed at © = Oz.
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Lemma 1. Under the stability assumption (Bl1l),

a
- Zn+1(en)| -0 as a = 0.

suplZyy

Proof. Let M, denote an integer whose specific value will be
selected below. The variations in the Bj cause no problem in
the proof and neither does {Cuj}. So, in order to simplify the
proof set Bj = B, a constant, and C = 0; i.e., the bi components

of 9(-) are constant. Then

n-M
a
a e
e R e Ijz_m(An...An_Ma+1)An_Ma e Aj+1Buj|
B M, W, d X
(7.6) + jE_J(An) (A,) Buj|
e B3| e, |
+ B aav B xR Bu. | .
j=n-M_+1 s gt = J

By (7.5), there is a real K (not depending on a or Ma)
such that the first two terms of (7.6) are each bounded in norm by
K(l-E)Ma/e. We will next get a bound on the third term. In (7.6),
the value of the time parameter n plays no special role and it
is enough for us to show that (7.7) tends to zero uniformly in

A0 = A(0(0)) as a -+ 0.

Ma-l
. Al
(7.7) jZO |Ag - Aj Ay s
In (7.7), Ai takes the form Ai = A0 + Gi’ and all that we assume on

such that

Gi is that there is a real K

0

B
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|Gi| < Kole(ia) - 6(0)]. It is convenient to work in a matrix

oy

norm |°|0 which might depend on ©6(0) but where there are real

K,,K;, independent of 8(0), such that || < K3|-|0, |-|0 < Kzl‘l.

In particular define IAlg = |sTp x'A'P(0(0))Ax. Then IAOI0 < 1.
x|=1

By (7.3), KZ’KS exist and we can also suppose that |6i|o <

Kzle(ia) - 6(0)]. For the jth term of (7.7) in the |-|0 norm, we have

-*1 - ]
IAO(AO"GI)"'(AO‘Gj) . Ag) Io b lel(J) iglldilo

j-1
+ Ay 7 o e o RS
0'0 i2>il i 12 0 0'0'"1 J'O

Let A = Kz sup |0(s) - 6(0)|. Then a crude upper bound on the

<
s<M_a

: above is

TR R R 3 ey S k.
IAOIO {(1)(m) * (2)(‘]’AET6) £ s (J)(m) }

j*1 R
A {1 + )" - 1}.
Moo [oTo

A

and (7.7) satisfies

M -1

a . .
28) [T €Ky ) japlition » sfiyd L g
e AoTo :

Now choose Ma + o as a -+ 0 in such a way that aMa (hence A)

goes to zero. Then, since gup IA@(UDIO < 1, the right side of
0

M
(7.8) and (1-¢) 2 both tend to zero uniformly in 6(0) € S, as

a-+ 0. Q.E.D.




i 2

-28-

Similar proofs yield the following corollaries.

B —

Corollary 1. Assume (Bl). Let Maa - 0 and Ma + @ .a§
a >0 and let © denote the set {6(u): na - M,a <u<mna+ Maa}. f
Then
a j
(7.9) 328 lzn+1(9n) = Zn+1(9)| -0 |

as a > 0, uniformly in n.

Corollary 2. Assume (B1), (B3). Then [R(82) - R3[| » 0

uniformly in n as a > 0. Also there are K < «, g 0 such

that for n > j

(7.10) | (I1-aR(32)) (1-aR(8] 1)) ... (I-aRce§+1))|sK(l-aeo)“'j

for all n,j and small a. The function Rt = .R(O(t)) is

continuous. The function F(:) is continuous and Fi + F(6(t)),

uniformly in t, as a > 0, n >« if an is held equal to t.

Proof. The second assertion is a consequence of the continuity
of 6(-), and (B3) and (7.9). The rest are consequences of Lemma 1,

and Corollary 1 and the details are omitted.

7.3. A limit theorem for {Yi}. We next turn to the treat-

ment of the deterministic sequence {Yi}. Let o(t,s), t > s,




s 2

=30~

denote the fundamental solution of the linear equation X = -Rtx,
and let Ya(-) denote the piecewise constant function on ([0,=)

with values Y2(t) = Yﬁ on [an,an+a), n > 0.

et

emma 2. Assume (Bl), (B3). Then {Yn} is uniformly

bounded. If the ﬁ? in (7.12) are replaced by R(G?), then the

difference between Yo+

and the new right hand side converges to

zero uniformly in n, as a > 0. As a »0, Y3(-) converges
uniformly on bounded intervals to the function Y(-) defined by

t t
¢(t,0)Y(0) - I0¢(_t,s)des + Jotb(t,s)F(O(s))ds

]

(7.11a) Y(t)

o(t,0)Y(0) - @(t,0)(8(t) - 9(0))

t
[oct, iR @ty - 9s))as
0

+

t
f o(t,s)F(®(s))ds,
0

which is the unique solution to the equation

(7.11b) dY(t) = -RtY(t)dt - do(t) + F(9(t))dt.

Proof. For the first assertion we write the solution to

(7.1a) in the form (using a summation by parts to get the second

equation)

e
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i P v

220 -

n
— e ~a.\
(7.12) Y ., = Il (1-aB)Y,

n n n Fo
- I Il (-affyeed 4 ) fﬁ (I-aﬁ?)aF?

i=0 j=i+l

n n
= I (1-af®)Y, - I (1-aR?) (6 (an+a) - ©(0)]
i=0 S .

n n
- La [l -afHRE(e(nava) - 8(ia)] +

i=1 j=i+l J

n n R
#* 7 I1 (1-aR?)aF2.

e j i

i=0 j=i+1

Now use Corollary 2 together with the boundedness of 6(-).
The second assertion follows from Corollary 2. The last
assertion then follows by letting a - 0, n » », an = t, in (7.12)

and noting that for t > s

m_(t)
aII (I-aR(eg))'*¢(t,S), t2>s
i=m_(s) s
a
uniformly on bounded s,t intervals. Q.E.D.

7.4. Tightness of {U:}. With the preparatory results

available, we proceed to the main result, by following the pattern

of development in Theorem 1.
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a

Theorem_ 3. Under (B1l)-(B4), {Un, n >0, small a} is tight.
2
|

In particular (since fo = ﬁg = 0), E|Y~n < Ka.

Proof. The proof is quite similar to that of Theorem 1 and

we only remark on the basic set up. The Liapunov functions of

Theorem 1 will be V(y) = y'y = l?l2

oo -
Vg ey Tedly et LEEN c o e,
i=n 1=n

~ a~
V(y) + aVl(y,tn).

viG,t,)

By virtue of (B2) and (B4), the sums are uniformly bounded and,

as required by Theorem 1,
(7.13) ViG.t)l < KOV + 1).

Now, by applying the mechanisms of the proof of Theorem 1

and using the boundedness of {|Yi|} yields

a g a s 5 xa s S eioaT
(7.14)  E VAT q.t,,) - VALt < -aliRY .+ ka?(14]¥ | %).
Since ﬁ: is positive definite, uniformly in (small a) (Corollary 2

and (B3)), there is a Y > 0 such that §ﬂ§:?n > YV(?n) and the

method of Theorem 1 (together with the uniform positive definiteness

of ﬁ:) yields the desired tightness. Q.E.D.
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7.5. Approximating Cg(a) by an exponential. Recall the

function Cg(a) introduced below (5.3). Here -WnWﬁ is the

Hi of (5.3). We can write
a £ a,,.a ag a
(7.15) U = a0 « 44 60+ A Y.

The estimate (7.16) is needed in the proof of the next theoren.

By (B2), (B4), (the limits of the sums are ma(s),ma(t)-l)

2 a a
E|Y 82| < 2E § |8%| |E. ! 8% < K(t-s)/a.
3 1 = i i i+l j>i G L

By this estimate and Chebychev's inequality there is a real K

such that
ma(t)-l
a 2
(7.16) P{a] Y Byl = &} < Ka(t-s)/c”.
i=m,(s) 1

Theorem 4. Under (B1l)-(B4)

m_ (t)
Cma(s)(a) + o(t,s)

uniformly on bounded s,t intervals if a - 0 fast enough; in

particular, through any sequence {ak} where 8, < .
k
Proof. The proof is very similar to that of Theorem 2,
Part 2. First, fix t < T, let M denote an integer, and divide

[0,t] into M intervals, each of width 6. Suppose (without loss




~ R

of generality) that N = §/a 1is an integer and § < 1. The
constants K below do not depend on a,8 or on t < T, and
their values may change from usage to usage. We have

N-1 A-1 2 a
(7.17) ¢y "(a) - (1 + a_EOH§)| cagc TNt

o Tt
J 12>11 279

£, aNIH;_1 W H%l < K=,
(7.17) holds (with the same K) when 0 and N - 1 are replaced by
iN-N and iN, resp., for any i > 0. Hence,

NM-1
. m(t N-1
Iy el CUE e (5 Ae F W] 2 X6,
J=NM‘M J J=0J

Let {ak} satisfy } a, < «. Next, we want to show that

NM-1 Nk
(7.19) (I + a R o PO ¢ R B
j=NM-M J j=o0 )

9 N
(I - aN% : ﬁ?) voe (L =@

-1
LRD[ ~ o0
j=NM-M j=0

uniformly for t € {ié: i < T/6} w.p.1, as a > 0 through the

sequence {ak}, for each fixed 6 > 0. Owing to the fact that both

ma(T+u)-1

m, (T+u)
products (I +a § H3) and C (1) (a) can be made
i=m, (7) J M
arbitrarily close to the identity by letting u and a be small,

(7.19) implies that

m_(t) m_(t)-1 o i
Icg” (a) - ajljo (I-aR;‘)l > 0 |




ai
b 5

e

uniformly in t < T, w.p.1l, as a > 0 through {ak}. To get

“L, i

(7.19), we use the estimate

MoiN-1
(7.20) |(7.19)] < ka ] | 1 85 |
i=1 j=iN-N

u

Eo(a)

and, by using (7.16) with & = (t-s) and M = T/S,

M e
P{Ey(a) >-e}< [ Pla] I = BY| > €&/T}
7 i=1  j=iN-NJ
2 3
T i e,
< (E)K6a22z7- K(Gz)a

Thus § P{Ey(ay) 2 €} < » and the Borel-Cantelli Lemma and (7.20)
k
implys (7.19).
Finally, use the fact that by Corollary 2, (7.19) remains

true when ﬁ? is replaced by R(®(aj)) = R(e?) and the fact

that
NM-1
IT (1-arR(8(aj))) + &(t,0)
j=0 F
uniformly in [0,T]), as a + 0, to complete the proof. Q.E.D.

7.6. The Wiener process and the limit theorem for {u"()1.

Define Ua(-) as in Section 4 and define W: and P: by

-1 n-1
L B;Y r=va § v?

n
; s X sy &
0 11 n j=0 1

a
N, = 78 ;




-36-

and let W23(-) and Fa(-) be the continuous parameter processes

f’* with values Wi and Fﬁ, resp., on [an,an+a). By solving !
(7.15) and doing a partial summation, we get (5.4), but where U;
is replaced by 0 and all N's are deleted. The limit result is

given in Theorem 5 under the additional assumptions:

(BS) {u;} 1is a sequence of bounded independent and identically

distributed random variables with Eui = oﬁ and Eui = 0.

(B6) {ui} is a bounded ¢-mixing process [10] with

mixing rate {¢i} satisfying 1} ¢1/2 < o,

Remark on (B5)-(B6). They are stronger than necessary.
(BS) is used because otherwise F(8) # 0 and it seems pointless to
get a 1limit theorem for Ua(-), when the ?(-) itself is biased
by F(®(-)). Also, (B5)-(B6) imply (B2) and also that (B4) is

¢ zero.

Theorem 5. _Assume (B1), (B3), (BS5), (B6). Then

2(k*241) [ oy

{w“(-),r“(-)} converges in D weakly to a Wiener

process (W(*) T(-)) whose covariances are

2 t
(7.22a) Cov I'(t) = ou I R(8(v))dv
0
® ot
: (7.22b) Cov W(t) = . ) IOEBO(Q (v))?(v)?'(_v)Bi(e(v))dv
‘f = -0

© t
(7.22¢) ET(t)W'(t) = § J Eug¥o (8 (V)Y (V) B (8 (v))av.
=1 "'0 2




R

{Ua(-)} converges weakly in Dk+2+1[0,w) to the diffusion U(°)
given by
(7.23) dU = -R Udt + dW + dr.

Remarks. (7.22a-c) are well defined. The sequence {ui}

and, for each 6, {wn(d),en(e)}, are stationary processes, so the

subscript 0 and ¢ in (7.22b,c) could be i and i + &, resp.,

AR A e TV T W

for any 1i. These expressions are calculated by first calculating
the asymptotic moments of {¥, (%)} needed in (7.22) for each 6.
These are continuous functions of 6, so (7.22) makes sense. Note
that the covariance "increment'" at t depends only on the para-
meter 6(t), the desired form. Compare (7.22) to the R below
(5.1). They are equivalent if
s we use f(e,i?) = Y? * B?Yj and neither the parameters nor Yj
vary with time.

The exact values of the covariances are complicated and one
would not normally want to calculate them - even for some known
""test" variation 6(-). Theorem 5 gives the structure of the limit

and indicates how the variances depend on the unknown function.

This, in itself, is useful.

! Proof. Once the assertions concerning convergence to the
? Wiener process are shown the proof is completed as indicated

below (5.6) for Theorem 2. Only the assertions concerning the

Wiener processes will be proved. The proof of those assertions

are based on the proof of similar assertions in Theorem 2 and in
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b e

(I1)], Theorem 2). The main changes are due to the non-stationarity,

which requires altering (A9)-(Al1l) (resp., (A6)-(A8) of [1]).

In our non-stationary and bounded {un,un} case, (Al0) and

(A11) should be replaced by: Let h? = Y? or B% and define é
(7.24a) o3 (i) = j?p|EJ Seibfeien BB eihSeiagls 220, 120,

(7.24b) p5 (i) = suplEkhk+1| i > 8,

Then

(7.24c) Z(D Ntz . Z(P (1))

where the sums converge unifo i a.

By the independence of {ui}, (7.24) is obvious for
hg = Y?. The sequence {wi} is ¢-mixing with the corresponding
{¢j} satisfying ¢1/2 < », because of (B5)-(B6) and the fact

that there are linear F:(;)with uniformly (in n,q) bounded co-

efficients and € satisfying Iegl < K(1-€)9 such that

S Fg(un”"’un-q’un""’un-q) + eg. Consequently, both

{Wn} and {B:} are ¢-mixing with the corresponding {¢j} satisfying
) ¢;/2 < o, This implies (/7.24) for h? = B?. The
property (7.24) was used in([1]), Parts 1,2 of proof of Theorem 2),

+ M(tyrt)-1
to show that % : /5; h, was tight and converged weakly to
N

+ n
In [1], m(t) = max{n: g a; <t} and a; + 0 as i -+=and } a; = =;
also the superscript 'a' was not used or needed. But the proof can

also be used for our case, since only (7.24c) was used.

e diciaa el o 14 e B o j
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m(tN*t)-l
a continuous martingale, and that | ) /5; hilz is uniformly
m(t_ )
n

integrable in N. The same proof can be used when a; = a. Thus,
W3(-),r3(-)} are tight in DZ¥*®*1) (g o) and all weak limits are
continuous martingales and {|Wa(t)|2, IFa(t)IZ, small a} 1is uni-
formly integrable for each t.

Choose and fix a convergent subsequence and index it by n,
and let W(:),T'(-) denote the limit. As we will see, the limit
will not depend on the subsequence. Let q be an arbitrary integer, anc

S.

i’ i <gq, t,s arbitrary except that B IR and let g(-) be

a bounded continuous function. Let Et denote Em ()" By the weak
a

convergence and uniform integrability,

(7.25)  Bg0(s)),T7(s;), 1 € QE,II*(trs) - T3(0)) I (e+s) - T2(O)]"
> Eg(W(s;),T(sy), i € @ [F(t+s) - T(8))IT(t+s) - T(8))".

Evaluating the Et[ ] term and using the independence of the

{ui}, yields (limits of the sums are ma(t),ma(t+s)~1)

(7.26) = E If%(tes) - PO 4T (eesy - TO(6)0 = a By T v 000"
=afolEV.(v,)".
s A g

since lim |Ev.v! - R}| » 0 as [i-m (t)| > = by (BS), (B6),

the 1limit of the right side is the limit of zojﬁj, which (in turn)

is the limit of a 03R(6?) which (in turn) equals

t+s
I 05R(6(v))dv. Due to the arbitrariness of si,q,g,s,t, we have
t

that
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E{[F(t+s) - T(t)})(T(t+s) - T(t)}'| T(v),W(v), v < ¢t} =

t+s 2
- [ Telre@ ey,
t %)
hence that the right side of (7.22a) is the quadratic covariation
of Ir(:). Thus T(-) 1is a Wiener process. Similarly, if the
right sides of (7.22b,c) are the quadratic covariation of W(-)
and the cross quadratic covariation of W(:),I'(-), then (W(:),
r(-)) 1is the asserted Wiener process, and the proof will be
completed.

We now do a similar calculation for Wn(-). We need only
show that (limits of sums are ma(t),ma(t+s) - 1 wunless other-

wise written)

- — a'
(7.27) aE, E 82Y. § Yi6;

converges to the integral in (7.22b) with limits (t,t+s) in-

stead of (0,t). Equation (7.26) equals (use the convention

b
I1=0 if b <c)
(o4

ma(t+s)-l-1 :
(7.28) ) I eE 0.V, 6.,

g‘io i=ma(t) t 1 1 1+2

ma(t+s)-1

+ 2 h aE Ba-Y-Y' B. "
£<0 i=ma(t)*|£| t 11 1*2 1*2

For all i, i + £ in the range of the above sums, the ¢-mixing

implies that

;
8
!

!




AL

8 vy B 1/2
|Eo BTV agBiegl < KO3
m_(t+s)
’ & 1/2 s
Since ) ) a¢|l| + 0 as L +» «, we may evaluate the limit

|2]>L i=ma(t)
of (7.28) by evaluating the limit of the inner sums individually as

a > 0, and then summing over ¢. By the same argument which we used
th

for Fa(-) below (7.26), the limit of the 2 inner sum is the same
as the limit when Et is replaced by E. Furthermore, by Lemma 1
and its Corollaries, B? can be replaced by 81(9?) without altering
the limit. Upon making these replacements, we see that gth inner sum

converges to the 2th

integral in (7.22b) with limits (t,t+s) instead
of (0,t). By the argument used in connection with T (-), this implie

that W(') 1is a Wiener process with the asserted covariance.

We need only show that (7.22c) is the cross-quadratic covariance

between T (-) and W(-) 1is (7.22c). The proof of this is the same

as that just given for W(*) above. The sum is ! rather than
o 1
Y , since W, is independent of y., i <n, and of V¥, and

icn.  Q.EBD.
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